Chapter 1 FRACTIONS

* Important points
- A fraction is a part or parts of a whole .
- A fraction is written in the form of $\frac{\text { numerator }}{\text { denominator }}$
- The numerator represents the number of parts being referred to
- The denominator represents the total number of equal parts of a whole
- Equivalent Fractions : Fractions that represent the same part of the whole are called equivalent fractions
- Like Fractions: Fractions with the same denominator are called like fractions.
- Unlike Fractions: fractions with different denominators are called unlike fractions.
- Proper fractions: fractions whose numerator is less than the denominator are called proper fractions. They are always smaller than 1.
- Improper fractions : Fractions whose numerator is greater than or equal to the denominator are called improper fraction. They are always greater than or equal to 1
- Mixed Fractions : Fractions that can be expressed as a whole number and a proper fraction is called a mixed fraction.Mixed fraction is always greater than 1

Exercise - 1

1 write the following fractions in numbers :
a) two - fifths $=\frac{2}{5}$
b) one - sixth $=\frac{1}{6}$
f) one quarter $=\frac{1}{4}$

Practice c, d,e in rough copy

Exercise-2

1. (a) $\frac{2}{6}, \frac{4}{12}$, yes, the fractions are equivalent.
(b) $\frac{1}{12}, \frac{1}{6}$, no, the fractions are not equivalent.
2. (a) $\frac{25}{30}=\frac{25 \div 5}{30 \div 5}=\frac{5}{6}$
(b) $\frac{6}{7}=\frac{6 \times \sqrt{7}}{7 \times 7}=\frac{42}{49}$
3. (a) $\frac{3}{5}=\frac{3 \times 2}{5 \times 2}=\frac{6}{10} ; \frac{3}{5}=\frac{3 \times 3}{5 \times 3}=\frac{9}{15}, \frac{3}{5}=\frac{3 \times 4}{5 \times 4}=\frac{12}{20}, \frac{3}{5}=\frac{3 \times 5}{5 \times 5}=\frac{15}{25}$ The first five fractions equivalent to $\frac{3}{5}$ are $\frac{3}{5}, \frac{6}{10}, \frac{9}{15}, \frac{12}{20}, \frac{15}{25}$.
(b) $\frac{2}{7}=\frac{2 \times 2}{7 \times 2}=\frac{4}{14}, \frac{2}{7}=\frac{2 \times 3}{7 \times 3}=\frac{6}{21}, \frac{2}{7}=\frac{2 \times 4}{7 \times 4}=\frac{8}{28}, \frac{2}{7}=\frac{2 \times 5}{7 \times 5}=\frac{10}{35}$

The first five fractions equivalent to $\frac{2}{7}$ are $\frac{2}{7}, \frac{4}{14}, \frac{6}{21}, \frac{8}{28}, \frac{10}{35}$.
(c) $\frac{5}{6}=\frac{5 \times 2}{6 \times 2}=\frac{10}{12}, \frac{5}{6}=\frac{5 \times 3}{6 \times 3}=\frac{15}{18}, \frac{5}{6}=\frac{5 \times 4}{6 \times 4}=\frac{20}{24}, \frac{5}{6}=\frac{5 \times 5}{6 \times 5}=\frac{25}{30}$

The first five fractions equivalent to $\frac{5}{6}$ are $\frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \frac{25}{30}$.
(d) $\frac{4}{11}=\frac{4 \times 2}{11 \times 2}=\frac{8}{22}, \frac{4}{11}=\frac{4 \times 3}{11 \times 3}=\frac{12}{33}, \frac{4}{11}=\frac{4 \times 4}{11 \times 4}=\frac{16}{44}, \frac{4}{11}=\frac{4 \times 5}{11 \times 5}=\frac{20}{55}$

The first five fractions equivalent to $\frac{4}{11}$ are $\frac{4}{11}, \frac{8}{22}, \frac{12}{33}, \frac{16}{44}, \frac{20}{55}$.
4. (a) $\frac{21}{49}=\frac{3 \times 7}{7 \times 7}, \frac{9}{21}=\frac{3 \times 3}{7 \times 3}, \frac{3}{7}=\frac{3 \times 1}{7 \times 1}, \frac{12}{21}=\frac{3 \times 4}{7 \times 3}$

So, $\frac{12}{21}$ is not equivalent to others.
(b) $\frac{15}{27}=\frac{5 \times 3}{9 \times 3}, \frac{5}{9}=\frac{5 \times 1}{9 \times 1}, \frac{45}{72}=\frac{5 \times 9}{9 \times 8}, \frac{10}{18}=\frac{5 \times 2}{9 \times 2}$

So, $\frac{45}{72}$ is not equivalent to others.
(c) $\frac{18}{20}=\frac{3 \times 6}{4 \times 5}, \frac{3}{4}=\frac{3 \times 1}{4 \times 1}, \frac{9}{12}=\frac{3 \times 3}{4 \times 3}, \frac{15}{20}=\frac{3 \times 5}{4 \times 5}$

So, $\frac{18}{20}$ is not equivalent to others.
(d) $\frac{14}{70}=\frac{1 \times 14}{5 \times 14}, \frac{1}{5}=\frac{1 \times 1}{5 \times 1}, \frac{6}{15}=\frac{1 \times 6}{5 \times 3}, \frac{3}{15}=\frac{1 \times 3}{5 \times 3}$

So, $\frac{6}{15}$ is not equivalent to others.
5. (a) $\frac{3}{7}=\frac{3 \times 5}{7 \times 5}=\frac{15}{35}$

So, $\frac{15}{35}$ is an equivalent fraction of $\frac{3}{7}$ with numerator 15 .
(b) $\frac{3}{7}=\frac{3 \times 6}{7 \times 6}=\frac{18}{42}$

So, $\frac{18}{42}$ is an equivalent fraction of $\frac{3}{7}$ with denominator 42 .
(c) $\frac{3}{7}=\frac{3 \times 9}{7 \times 9}=\frac{27}{63}$

So, $\frac{27}{63}$ is an equivalent fraction of $\frac{3}{7}$ with numerator 27 .
(d) $\frac{3}{7}=\frac{3 \times 11}{7 \times 11}=\frac{33}{77}$

So, $\frac{33}{77}$ is an equivalent fraction of $\frac{3}{7}$ with denominator 77 .
6. (a) Cross multiply the numerator of the 1 st fraction with the denominator of the 2 nd fraction and the denominator of the 1st fraction with the numerator of the 2 nd fraction.
We have, $\frac{3}{8}$ and $\frac{16}{24}$

$$
\Rightarrow 3 \times 24=72,8 \times 16=128
$$

So, $\frac{3}{8}$ and $\frac{16}{24}$ are not equivalent fractions.
(b) $\frac{2}{5} \longrightarrow \frac{10}{25}$
$\Rightarrow 2 \times 25=50,5 \times 10=50 \quad \therefore \frac{2}{5}$ and $\frac{10}{25}$ are equivalent fractions.
(c) $\frac{6}{7} \longrightarrow \frac{42}{49}$
$\Rightarrow 6 \times 49=294,7 \times 42=294 \quad \therefore \frac{6}{7}$ and $\frac{42}{49}$ are equivalent fractions.
Exercise-3

1. We first find the HCF of 48 and 64 .

Factors of 48 are (1),(2), 3,(4), 6,(8), 12, (16), 24, 48.
Factors of 64 are (1),(2),(4),(8), (16), 32, 64 .
Common factors are $1,2,4,8,16$.
$\therefore \mathrm{HCF}=16$
So, we divide 48 and 64 by 16 .

$$
\frac{48}{64}=\frac{48 \div 16}{64 \div 16}=\frac{3}{4}
$$

Thus, $\frac{48}{64}$ in the lowest terms is $\frac{3}{4}$.
2. $\frac{15}{20}=\frac{15 \div 5}{20 \div 5}=\frac{3}{4}$
$(\mathrm{HCF}$ of 15 and $20=5)$
3. $\frac{35}{45}=\frac{35 \div 5}{45 \div 5}=\frac{7}{9}$
(HCF of 35 and $45=5$)
4. $\frac{49}{63}=\frac{49 \div 7}{63 \div 7}=\frac{7}{9}$
(HCF of 49 and $63=7$)
5. $\frac{12}{18}=\frac{12 \div 6}{18 \div 6}=\frac{2}{3}$
$(\mathrm{HCF}$ of 12 and $18=6)$
6. $\frac{36}{81}=\frac{36 \div 9}{81 \div 9}=\frac{4}{9}$
7. $\frac{22}{121}=\frac{22 \div 11}{121 \div 11}=\frac{2}{11}$
$(\mathrm{HCF}$ of 22 and $121=11)$
8. $\frac{42}{48}=\frac{42 \div 6}{48 \div 6}=\frac{7}{8}$
(HCF of 42 and $48=6$)
9. $\frac{24}{32}=\frac{24 \div 8}{32 \div 8}=\frac{3}{4}$
$($ HCF of 24 and $32=8)$
10. $\frac{85}{100}=\frac{85 \div 5}{100 \div 5}=\frac{17}{20}$
$(\mathrm{HCF}$ of 85 and $100=5)$
11. $\frac{75}{80}=\frac{75 \div 5}{80 \div 5}=\frac{15}{16}$
$($ HCF of 75 and $80=5)$
12. $\frac{25}{40}=\frac{25 \div 5}{40 \div 5}=\frac{5}{8}$
(HCF of 25 and $40=5$)

Fun Time

The fraction $=1=\frac{2}{2}=\frac{3}{3}=\frac{4}{4}=\ldots$ looks same even if we turn it upside down.

Exercise-4

1. $\frac{2}{7}, \frac{4}{7}, \frac{6}{7}, \frac{11}{7}$ and $\frac{3}{7}$ are like fractions with same denominator 7 .
2. (a) numerator < denominator, it is a proper fraction.
(b) numerator $>$ denominator, it is an improper fraction.
(c) numerator < denominator, it is a proper fraction.
(d) numerator $>$ denominator, it is an improper fraction.
(e) numerator < denominator, it is a proper fraction.
(f) numerator < denominator, it is a proper fraction.
(g) numerator < denominator, it is a proper fraction.
(h) numerator $>$ denominator, it is an improper fraction.
(i) numerator < denominator, it is a proper fraction.
(j) numerator $>$ denominator, it is an improper fraction.
3. (a) $\frac{15}{7}=2 \frac{1}{7}$

(b) $\frac{8}{3}=2 \frac{2}{3}$

(c) $\frac{18}{4}=4 \frac{2}{4}$

(d) $\frac{25}{6}=4 \frac{1}{6}$

(e) $\frac{44}{5}=8 \frac{4}{5}$

(f) $\frac{35}{6}=5 \frac{5}{6}$

(g) $\frac{17}{2}=8 \frac{1}{2}$

h) $\frac{54}{5}=10 \frac{4}{5}$

$\begin{array}{r}-0 \\ \hline 4\end{array}$
(i) $\frac{92}{11}=8 \frac{4}{11}$

(j) $\frac{80}{7}=11 \frac{3}{7}$

4. (a) $1 \frac{2}{3}=\frac{3 \times 1+2}{3}=\frac{3+2}{3}=\frac{5}{3}$
(b) $3 \frac{3}{5}=\frac{5 \times 3+3}{5}=\frac{15+3}{5}=\frac{18}{5}$
(c) $2 \frac{2}{7}=\frac{7 \times 2+2}{7}=\frac{14+2}{7}=\frac{16}{7}$
(d) $4 \frac{1}{2}=\frac{2 \times 4+1}{2}=\frac{8+1}{2}=\frac{9}{2}$
(e) $2 \frac{1}{9}=\frac{9 \times 2+1}{9}=\frac{18+1}{9}=\frac{19}{9}$
(f) $8 \frac{3}{4}=\frac{4 \times 8+3}{4}=\frac{32+3}{4}=\frac{35}{4}$
(g) $7 \frac{2}{5}=\frac{5 \times 7+2}{5}=\frac{35+2}{5}=\frac{37}{5}$
(h) $9 \frac{3}{7}=\frac{7 \times 9+3}{7}=\frac{63+3}{7}=\frac{66}{7}$
(i) $5 \frac{7}{9}=\frac{9 \times 5+7}{9}=\frac{45+7}{9}=\frac{52}{9}$
(j) $6 \frac{5}{8}=\frac{8 \times 6+5}{8}=\frac{48+5}{8}=\frac{53}{8}$

Exercise-5

1. (a) $\frac{3}{7}<\frac{5}{7}$, The fraction with greater numerator is greater for like fractions.
(b) $\frac{11}{12} \searrow \frac{10}{12} \quad$ (c) $\frac{4}{5} \boxminus \frac{4}{5}$
(d) $\frac{3}{7}<\frac{3}{5}$, The fraction with smaller denominator is greater for unlike fractions with same numerator.
(e) $\frac{16}{5}<\frac{16}{3}$
(f) $\frac{1}{12} \measuredangle \frac{1}{6}$
(g) $\frac{2}{3}>\frac{4}{5}, 10<12$, so, $\frac{2}{3}$
< $\frac{4}{5}$
(h) $\frac{5}{9}>\leq \frac{20}{23}, 115<180$, so, $\frac{5}{9}$ < $\frac{20}{23}$
2. (a) The fraction with greater numerator is greater for like fractions. $\therefore \frac{1}{7}<\frac{2}{7}<\frac{3}{7}<\frac{4}{7}<\frac{6}{7}$
(b) The fraction with smaller denominator is greater for unlike fractions with same numerator.
$\therefore \frac{5}{12}<\frac{5}{9}<\frac{5}{7}<\frac{5}{6}<\frac{5}{3}$
(c) $\frac{1}{3}, \frac{5}{6}, \frac{7}{12}, \frac{3}{4}, \frac{1}{2}$ are unlike fractions. So, we convert them into like fractions first.
Multiples of 3 are 3,6,9, (12), 15, 18.
Multiples of 6 are $6,12,18,24,30,36$.
Multiples of 12 are (12), 24, 36, 48, 60, 72.
Multiples of 4 are $4,8,12,16,20,24$.
Multiples of 2 are $2,4,6,8,10$, (12).
LCM of $3,6,12,4$ and 2 is 12 .

$$
\begin{aligned}
& \frac{1}{3}=\frac{1 \times 4}{3 \times 4}=\frac{4}{12}, \quad \frac{5}{6}=\frac{5 \times 2}{6 \times 2}=\frac{10}{12}, \quad \frac{7}{12}=\frac{7 \times 1}{12 \times 1}=\frac{7}{12}, \\
& \frac{3}{4}=\frac{3 \times 3}{4 \times 3}=\frac{9}{12}, \quad \frac{1}{2}=\frac{1 \times 6}{2 \times 6}=\frac{6}{12} .
\end{aligned}
$$

Now $\frac{4}{12}<\frac{6}{12}<\frac{7}{12}<\frac{9}{12}<\frac{10}{12}$
$\therefore \frac{1}{3}<\frac{1}{2}<\frac{7}{12}<\frac{3}{4}<\frac{5}{6}$
3. (a) $\frac{6}{7}>\frac{5}{7}>\frac{4}{7}>\frac{3}{7}>\frac{1}{7} \quad(\because 6>5>4>3>1)$
(b) $\frac{5}{6}, \frac{3}{9}, \frac{17}{36}, \frac{9}{4}$ are unlike fractions, so, we convert them into like fractions first.
LCM of 6, 9, 36, $4=36$

$$
\begin{aligned}
& \frac{5}{6}=\frac{5 \times 6}{6 \times 6}=\frac{30}{36}, \quad \frac{3}{9}=\frac{3 \times 4}{9 \times 4}=\frac{12}{36}, \quad \frac{17}{36}=\frac{17 \times 1}{36 \times 1}=\frac{17}{36}, \\
& \frac{9}{4}=\frac{9 \times 9}{4 \times 9}=\frac{81}{36} . \\
& \therefore \frac{81}{36}>\frac{30}{36}>\frac{17}{36}>\frac{12}{36} \quad \text { or } \quad \frac{9}{4}>\frac{5}{6}>\frac{17}{36}>\frac{3}{9}
\end{aligned}
$$

(c) $\frac{8}{3}>\frac{8}{5}>\frac{8}{6}>\frac{8}{7}>\frac{8}{9}$
$(\because 3<5<6<7<9)$

